Abstract

The generation of electricity from high strength abattoir waste water has been demonstrated to be feasible at room temperature, using a novel electron acceptor as catholyte with the potential of prolong usage in dual-chambered microbial fuel cell (MFC) systems with agar-salt bridge inter-connection. The utilization of this electron acceptor in the single dual-chambered and double dual-chambered MFC’s in parallel and series was observed to produce an open circuit voltage of 1560mV, 1400mV and 2860mV respectively. Maximum power density was observed to be 12.26mW/m², 20.71mW/m² for the single dual-chambered and double dual-chambered in parallel respectively. However, due to very high internal resistance of the double dual-chambered in series (>9999Ω) a very poor polarization data was obtained. Current densities at maximum power for the single dual-chambered and double dual-chambered in parallel were observed to be 16.09mA/m² and 35.77mA/m² with internal resistances 4000Ω and 600Ω respectively.

Introduction

The quest for alternative sources of energy is pertinent at this period of our history when concerns about global warming are causing topical and sensitive debate worldwide. The idea of direct electricity generation in a single step from biodegradable materials may tend to provoke the sensibility of the ordinary mind to ask the question, how?

It is a well known fact that energy can be transformed from one form to the other, for example, mechanical energy can be converted to electrical energy, and so on. One novel process which seems to have confirmed this statement in recent times is the microbial fuel cell technology. This technology has the capability of transforming chemical energy stored up in organic matter to direct current (D.C) in just a single step. In addition to generation of electricity, this technology has the potential of treating wastewater using the micro-organisms inherent in the waste water (Fan et al 2007; Logan and Regan 2006).

In microbial fuel cell, electrons released during organic or waste water breakdown are transported to the anodes which eventually are oxidized by electron acceptors at the cathode (Logan and Regan 2006). Although, this technology seems promising, microbial fuel cells are not deficient of their own challenges. Power output from microbial fuel cells has been affected by high internal resistance inherent in these systems. However, in a bid to improve power density in MFC’s, the use of electron acceptors apart from oxygen has been extensively explored (Rabaey et al. 2004; Rabaey et al. 2003; You et al. 2006). These authors used ferricyanide and permanganate solution to improve power density via reduction in internal resistance or high open circuit voltage (OCV). The maximum open circuit voltage recorded to date using permanganate solution is 1.532 volts by You et al. (2006). Though, power generation was enhanced in these studies using chemical catholytes, the problem of continuous replacement and toxicity of these electron acceptor i.e. permanganate and ferricyanide make their application on a large scale to be limited. In this research the use of a novel electron acceptor, with the potential for large scale applicability was studied.
Materials and methods

High strength abattoir waste water was collected from abattoir location at Choba community, Rivers State, Nigeria. The total chemical oxygen demand was determined to be 22,000mg/L using standard methods (APHA, 1985) with a pH of 6.68. Experimental set up for a dual chamber microbial fuel cell is as depicted in Fig. 1. The anode chamber containing about 850ml high strength abattoir waste water was connected via copper wires to the cathode chamber containing 20g/L of calcium hypochlorite powder (Ca(OCl)2) also known as bleaching powder. The two chambers were linked with a salt bridge inter-connection. The single dual-chambered system was closed with a 1000Ω resistor. Similar resistor was used to close the double dual-chambered in parallel and series connection.

Fig. 1 Experimental set-up for single dual chambered MFC.

The microbial fuel cell voltage for the 3-set up that is, single dual-chambered, double dual-chambered in parallel and series was monitored every 3 hours using a Digital Multimeter, (AVD 890G) (Venkata et al. 2007). Power density, was obtained from polarization test by varying the external resistance over a range of external load using a variable resistor box (J 2362) that ranged between 0 - 9999Ω. Reading of voltage and current was done within few minutes of their stabilization. Polarization was conducted after three single batch cycles have been carried out to obtain the maximum potential difference (Heilmann and Logan 2006; Liu and Logan 2004).

Maximum open circuit voltages observed prior to polarization were 1560mV, 1400mV and 2890mV for the single dual-chambered, and the double dual-chambered in parallel and series respectively. Maximum surface power density observed for these set-ups were 12.26mW/m² (0.1397mW), 20.71mW/m² (0.4788mW) for the single dual-chambered, double dual-chambered in parallel with current densities at maximum power being 16.09mA/m², 35.71mA/m² respectively (Fig 2 & 5). Due to very high internal resistance of the double dual-chambered MFC’s in series (›9999Ω) the maximum power density was outside the range of the variable resistor box. However, at 9999Ω the surface power density was 0.36mW/m² (0.0084mW) with a very poorly polarized current and voltage data (data not shown).

Results and discussions

Table 1: Design criteria of single dual-chambered microbial fuel cell

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume of cathode and anode chamber</td>
<td>1000ml</td>
</tr>
<tr>
<td>Volume of abattoir waste water</td>
<td>850ml</td>
</tr>
<tr>
<td>Nature of anode and cathode</td>
<td>Graphite rod</td>
</tr>
<tr>
<td>Length of projected graphite rod at anode</td>
<td>4.4 cm</td>
</tr>
<tr>
<td>Total area of projected graphite rod</td>
<td>0.01156m²</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>27 ± 3 °C</td>
</tr>
<tr>
<td>Operating pH</td>
<td>2.83(Cathode) & 6.68 (Anode)</td>
</tr>
<tr>
<td>Membrane</td>
<td>Agar -Salt bridge</td>
</tr>
<tr>
<td>COD</td>
<td>22,000mg/l</td>
</tr>
<tr>
<td>Agar casing</td>
<td>3/4 inch diameter PVC about 8cm long</td>
</tr>
</tbody>
</table>

Fig 2: Polarization plot for single dual-chambered MFC.

The maximum power transferred by the microbial fuel cell usually occurs when the external load (resistance) just equals the internal resistance i.e. (R_L = R_int) (Inomnis et al. 2008). Thus, the internal resistances at maximum power were determined to be 4000Ω, 600Ω and ›9999Ω, for the single dual-chambered, double dual-chambered MFC’s in parallel and series respectively (Fig 6).

The maximum surface power density observed for the single-dual-chambered system is consistent with results obtained in previous studies (Kim et al. 2004; Ghangrekar and Shinde 2006). Though,
The open circuit voltage (OCV) for the single dual-chambered system was very high (1560mV) as shown in Fig. 1 which could have translated to higher power density (Logan 2007). However, the low power density observed here may be related to the high organic strength waste water used in this set-up and possibly poor utilization of the graphite anodes.

For the double dual-chambered system in parallel, the open circuit voltage was slightly lower than the single dual-chambered system (1400mV) with a higher current density at maximum power (37.77Mw/m²). This is consistent with parallel connection, in which voltage averages while, the total currents add up i.e., the current density at maximum power for the double dual chambered in parallel is almost twice that of the current density at maximum power for the single dual-chambered system. Also, the observed low internal resistance (600Ω) is again consistent with parallel connections i.e., the total resistance of the double dual-chambered in parallel is close the sum of the reciprocal of the resistances of two single dual-chambered system.

The double dual-chambered system connected in series showed a high open circuit voltage of 2860mV but a low power and current density was observed due to the very large internal resistance of the set-up (>9999Ω). It thus seemed that, the sum of resistances for series connection for this set-up was additive. In essence, for large scale application, where high current density is needed using calcium hypochlorite (bleaching powder), connection in parallel, may provide a suitable means of maximizing power.
2\(HOCl + 2H^+ + 2e^- \rightarrow Cl_2 + 2H_2O\) \(\ldots(ii)\)

The sum of the reaction process (i) & (ii) adds up to;

\(Ca(OCl)_2 + 2H^+ + 2e^- \rightarrow Cl_2 + Ca(OH)_2\) \(\ldots(iii)\)

However, the product chlorine gas is readily soluble in water and in a closed system dissolves in water to yield HOCl as follows;

\(Cl_2 + H_2O \rightarrow HOCl + HCl \ldots(iv)\)

The sum of process (iii) and (iv) adds up to;

\(Ca(OCl)_2 + H_2O + 2H^+ + 2e^- \rightarrow HOCl + HCl + Ca(OH)_2\) \(\ldots(v)\)

Again, HOCl is made available for another process of electron and proton acceptance, made possible by the bacteria degradation at the anode chamber which releases electrons that is transported via copper wires to the cathode and protons that are transported through the salt bridge into the cathode chamber.

\(HOCl + 2H^+ + 2e^- \rightarrow Cl_2 + 2H_2O\) \(\ldots(vi)\)

The sum of process (v) and (vi) adds up to

\(Cd(OCl)_2 + HOCl + 4H^+ + 4e^- \rightarrow Cl_2 + H_2O + HCl + Cd(OH)_2\) \(\ldots(vii)\)

Again the chlorine generated at step (vii) re-dissolves in water which, in closed system yields;

\(Cl_2 + H_2O \rightarrow HOCl + HCl \ldots(viii)\)

Addition of step (vii) and (viii) yield a summed process as follows

\(Ca(OCl)_2 + 4H^+ + 4e^- \rightarrow 2HCl + Ca(OH)_2\) \(\ldots(ix)\)

Finally the end products react to form salt and water as follows;

\(2HCl + Ca(OH)_2 \rightarrow CaCl_2 + 2H_2O\) \(\ldots(x)\)

From the reaction processes described above it was observed that the direct electron and proton acceptor was HOCl as depicted in steps (ii) and (vi). Hypochloric acid is a very strong oxidant which is indirectly generated by \(Ca(OCl)_2\) when dissolved in water with a half cell potential \((E^0)\) of 1690mV (Mathews, 2002). In essence the theoretical maximum potential difference obtainable from this set-up would be

\(E^\text{cell} = (1690 - (-320))\ (mV) = 2010\ mV\)

This very high theoretic open circuit voltage may position bleaching powder as a potential catholyte for maximizing power in MFC systems.

The following are some advantages of using bleaching powder as a chemical catholyte.

- The regeneration of hypochlorite in the process during utilization of bleaching powder may make it more sustainable than other chemical catholytes.
- Cations such as K\(^+\), Na\(^+\), Ca\(^+\) and NH\(_2\)\(^+\) which are normally transported alongside protons (Rozendal and Halmeter 2006; Samee et al. 1997; Stenina et al. 2004) which, ultimately make the cathode chamber basic could be effectively managed by the acid/base system in the cathode chamber i.e. the HCl/ Ca(OH)\(_2\) thus enhancing an efficient transfer of protons into the cathode.
- Bleaching powder is relatively cheap compared with other chemical catholytes presently in use.

However, it’s worthy to note some shortcoming of utilizing bleaching powder as a chemical catholyte which are as follows:

- The use of bleaching powder as chemical catholyte results in the visible production of chlorine bubbles at the cathode chamber. Thus, the cathode chamber must be operated in a closed system to avoid contamination of surrounding air with chlorine gas.
- The use of nafion membrane may not be feasible because of the likelihood of chlorine gas to diffuse through the membrane into the anode chamber, similar to the diffusion of oxygen across the membrane in MFC’s systems that lead to low columbic efficiency (Logan et al. 2006).

Conclusion

The use of abattoir wastewater as substrate for Microbial fuel cell has the potential of generating electricity during its degradation using bleaching powder as the electron acceptor. Power optimization was observed to be realized when circuits were connected in parallel instead of being single or connected in series due to the high resistance in these later set-up. Parallel connection seems to optimize power by reducing the internal resistance when bleaching powder was the electron acceptor. Thus, the process of power generation and simultaneous treatment of abattoir wastewater in large scale systems can become practicable with proper design and reactor configuration.

References

